HKUST ITSO AI Chatbot

Important reminder

Please do not disclose personal data such as your HKUST account number, staff/student ID or name in the chatbot. Information provided will be retained to enhance system performance.

By using the HKUST ITSO Chat service, you confirm that you have read, understood, and agreed to the Disclaimer


Log in to access additional information for your user group in addition to the publicly accessible content.

Send Icon
HKUST SuperPOD - A TensorFlow Example

Example TensorFlow:

1.  In the first terminal

  • Run an interactive job in gpu node using srun. Supply your project group name and the partition (e.g. normal ) going to use.
    srun --partition normal --account=<yourgroupname> --gres=gpu:2 --pty $SHELL
    netid@dgx-26:~$
  • Note the DGX node name dgx-26 in the above example.

 

2.  (Skip if not using container)Create Tensorflow image if it is not available.

apptainer pull tensorflow:23.11-tf2-py3.sif docker://nvcr.io/nvidia/tensorflow:23.11-tf2-py3

 

3.  (Skip if not using container)Run tf image and mount your directory preferred to a mount point in container. In this example, we map our own scratch space to /scratch in container( /scratch does not need to already exist in the container)

apptainer run -B /scratch/yournetid:/scratch  --nv tensorflow:23.11-tf2-py3.sif

 

4.  Type: jupyter-lab --allow-root --ip='0.0.0.0'

 

5.  Mark the token for the second terminal

 

6.  Open another terminal to do second login. Do port mapping between compute node and your host, replace -xx with number. For our case should be dgx-26

ssh yournetid@superpod -L 8888:dgx-xx:8888

 

7.  Open the browser in your local workstation and type “http://127.0.0.1:8888/?token=????

 

8.  Done.

 


Support

General Enquiries cchelp@ust.hk
Suggestions & Complaints cclisten@ust.hk
Serviceline +852-2358-6200